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Abstract—This paper aims to extract the computational logic 
of a hybrid method for online calibration of car-following 
models and apply it to a refined car-following model that 
incorporates the behavior of vehicles moving on the adjacent 
traffic lanes. This calibration method combines the concept of 
Kalman filters with the Takagi–Sugeno Fuzzy Inference System 
(T-S FIS). Furthermore, this paper analyzes the influence of the 
lane change behavior on the calibration process. The testing of 
the hybrid calibration method in the case of a refined 
car-following model uses real traffic data and it is followed by a 
discussion of the results based on day/night traffic behaviors. 
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I. INTRODUCTION 

Recent developments in road traffic management focus on 
intelligent transportation systems (ITS). The need for these 
approaches arises as a consequence of the extension of road 
infrastructures and the increase of traffic congestion, 
especially in urban areas. 

Many solutions for traffic management use microscopic 
traffic models. Data used by these models consist of 
characteristics such as vehicle speed, acceleration, running 
distance between the vehicles moving in a chain through a 
traffic lane. All these data can be easily retrieved in real-time 
using sensor networks specific to traffic monitoring such as 
inductive loops, infrared sensors, video cameras, etc. The 
modeling process aims to provide a simulated model closer to 
the real model observed. This model can be further used to 
predict the future evolution of traffic characteristics which has 
a high impact on crossroads management (e.g., green-intervals 
settings, decision-making process regarding the adoption of an 
appropriate type of crossroad configuration – roundabout, 
traffic lights, etc.). Furthermore, the acquisition of traffic data 
can influence the modeled system through errors introduced 
during the measurement of traffic characteristics. According 
to these assumptions, there arises the need for high-accuracy 
traffic models. 

The calibration process involves a continuous validation 
of the parameters of the simulated model through a 
comparison with the traffic characteristics in real-time of the 
observed model. The output of this process consists of the 
identification of the compensation values, further called 
offsets, that should be applied to the simulated model until it 
faithfully reproduces the observed model. 

The purpose of this paper is to adapt the calibration 
method proposed by Pop et al. [1] to the needs of the refined 
car-following model [2-4]. In addition to previous studies, this 
paper provides testing and analysis of the performance of the 

proposed calibration method for both daytime and nighttime 
traffic behaviors. 

II. RELATED WORK 

The calibration of car-following models is challenging and 
depends on the correctness of selected measures of 
performance and goodness-of-fit functions [5]. Punzo et al. [5] 
conducted a research on the calibration of car-following 
models designed for both human and automated-driven 
vehicles. They provided a guideline for the calibration of these 
models and discouraged “the use of the objective functions 
which have consistently shown to be either not Pareto-
efficient, or not preferable according to the proposed criterion 
across all the models and datasets” [5]. 

The root mean squared error (RMSE) is the metric chosen 
in several studies to characterize the goodness of fit of the 
chosen calibration method. Gunter et al. [6] provide a 
comparison between three well-known car-following models 
(i.e., optimal velocity with relative velocity model – OVRV, 
intelligent driver model – IDM, and Gazis-Herman-Rothery 
model – GHR) in the context of automated-driven vehicles. 
They concluded that OVRM and IDM behave better than 
GHR in the context considered. Shang and Stern [7] compared 
the calibration results for OVRM, optimal velocity-follow the 
leader (OV-FTL), and IDM considering human-driven 
vehicles. The experimental results showed that the simulated 
IDM does not reproduce the real traffic as well as OVRM and 
OV-FTL under the same noise.  

Several papers present calibration methods based on 
artificial intelligence concepts. Nguyen and Stern [8] used 
RMSE to analyze the calibration of a new car-following 
model that uses reinforcement learning to address the 
oscillatory conditions of real traffic in the case of 
human-driven vehicles. A comparison with IDM showed 
satisfactory results of the proposed model, especially in the 
case of low-speed oscillatory driving conditions. Abodo et al. 
[9] combined the concepts of Bayesian inference and 
probabilistic programming in IDM calibration.  

Pourabdollah et al. [10] proposed a method that combines 
the application of the goodness-of-fit function with the use of 
three measures of performance. This approach was tested and 
validated by calibrating the following models: IDM, Krauss, 
and Wiedemann. This method showed significant 
improvements in the case of IDM, but for Krauss and 
Wiedemann, larger errors compared to IDM were still 
reported. 

III. MICROSCOPIC TRAFFIC MODELING 

In addition to mesoscopic and macroscopic traffic 
modeling concepts, microscopic traffic modeling provides a 
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more detailed overview of road traffic phenomena. Yin et al. 
[11] described the dynamic microscopic traffic model as a 
system containing the following levels of representation: 
crossroads configuration, links, lane choice behavior, and 
car-following. The last two levels have a great impact on 
describing the interactions between vehicles moving in 
parallel traffic lanes, in the same direction. 

At this microscopic level of modeling, the accuracy of 
vehicle motion parameters (e.g., acceleration, velocity, 
running distance), also called dynamic characteristics, is 
crucial for traffic collision avoidance. Fig. 1 illustrates the 
components of a control system for microscopic traffic. 
Real-time data, which characterize the observed model, 
represent the input for both the modeled system and the 
validation system. Based on previous data from time t - τ , the 
modeled traffic system predicts the parameters’ values from 
time t . The simulation processes these values and forwards 
them to the validation system responsible for a comparison 
with the real-time data retrieved at time t . The result of this 
validation represents the estimation error that is further 
processed by the calibration system that establishes the offsets 
to be applied to the modeled system. This process ends when 
the estimation errors identified during validation are equal to 
zero, with the modeled system being calibrated. 

 
Fig. 1. Control system for microscopic traffic – general overview. 

A. Car-following Concept 

As a level of the road network load model, the 
car-following model describes the dynamic interaction 
between vehicles moving in a chain on a traffic lane 
considering pairs of two vehicles (Fig. 2). The vehicle ahead 
represents the leader vehicle (LV), and the vehicle behind is 
called the follower vehicle (FV). The FV should dynamically 
adapt the acceleration control strategy based on the behavioral 
driving changes of the LV to avoid collisions. In Fig. 2, 2x  

and 4x  represent the running distances of LV and FV, 

 s t - τ  and  s t  represent the dynamic distances between 

LV and FV at time t - τ  and t , respectively. 

 
Fig. 2. Car-following model – dynamic characteristics. 

Equation (1) describes the state-space representation of the 
car-following model in continuous time and without time 
delay [12-13]. In addition to the previously described 
notations for vehicle characteristics, 1x  and 3x  represent the 

velocities of LV and FV, 1u  and 2u  are the accelerations of 
LV and FV, and S  represents the standard safety distance 
responsible for collision avoidance which depends on the 
vehicle length L . 
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 Taking into account the notations from (2), the state-space 
representation from (1) can be rewritten according to (3) [12-
13]: 
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 Based on previous assumptions, the traditional multiple 
input multiple output (MIMO) state-space representation from 
(4) for the continuous-time car-following model described by 

(1) has the matrices  A B  are controllable and  A C  

observable [12-13]. In addition, the system has the 
eigenvalues equal to zero. 
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B. Lane Change Behavior 

Lane change consists of an action taken by a driver to 
initiate the movement to join another adjacent traffic lane. 
This action contains a degree of uncertainty regarding the 
driver behavior, but some of them can be predicted (e.g., lane 
change initiated to a traffic lane that allows the drive to leave 
the road network, lane change because of low velocity in the 
movement of LV, etc.). The last situation enables the FV to 
become the new LV, in the case of a return to the initial traffic 
lane. Besides this possible switch in vehicle role, the 
movement to an adjacent traffic lane implies the integration of 
the vehicle initiating the maneuver as the new FV for the 
vehicle ahead and the new LV for the vehicle behind in the 
movement chain. 

Taking into account that i-1L , iL , and i+1L  are the right, 
middle, and left traffic lanes, Fig. 3 illustrates a lane change 
action of the 

iLFV  from iL  to i+1L . Each traffic lane is 

modeled using the single-lane approach for car-following 
models. After this action the old 

iLFV  from iL  becomes the 

new 
i+1

*
LFV  (“*” emphasizes the new role) from i+1L . In this 
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way, 
i+1

*
LFV  should adjust the acceleration control strategy 

according to the behavior of 
i+1LLV . Furthermore, this action 

also affects the old 
i+1LFV  movement, being necessary to 

adapt its dynamic characteristics to the new leader (
i+1

*
LFV ). 

At any time, the 
i+1

*
LFV  can return to its initial traffic lane iL . 

 
Fig. 3. Lane change action from traffic lane iL to i+1L  [2-3]. 

C. Online Calibration of Car-Following Models 

The need for calibration of car-following models arises 
from possible existing errors in the measurement of traffic 
characteristics, or during the parameter estimation in the case 
of the traffic modeling process. The purpose of an online 
calibration system is to cover these erroneous values by 
applying compensation values (offsets) to the modeled system 
inputs to reduce the difference compared to the real observed 
system based on a real-time validation with the parameters 
retrieved from the last one.  

Kalman filters have proved their efficiency in the online 
calibration of microscopic traffic models. Shi et al. [14] 
argued that even if the Kalman filtering concept usually 
applies in the calibration of state-space models in discrete-
time, it is also appropriate for state-space models in 
continuous-time. Equation (5) describes the state equations 
adapted to the needs of the car-following model as defined by 

Punzo et al. [15]. The notation  iγ , i = 1, 3, s  describes the 

model parameters that need calibration and T  is the space 
length. 
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 The output of the calibration system defined in (6) [15] 

depends on the measurement errors  iζ , i = 1, 3, s  of the 

traffic parameters as follows:  
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 The state-space representation for the Kalman filter 
becomes as follows [15]: 
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1 0 0

A = 0 1 0

T -T 1

 
 
 
  

,  kB = 0  and k k

1 0 0

C =D = 0 1 0

0 0 1

 
 
 
  

. 

The estimated values of the Kalman filter  x̂ t  defined in 

(8) [15] consider the gain matrix kK  and the prediction 

 prx̂ t  from previous knowledge computed according to (9) 

[15] based on the values kA  and kB  of the matrices 
t-1kA  and 

t-1kB  at time t - 1 . 

        pr k k prˆ ˆ ˆx t  = x t  + K γ t  - C x t                    (8) 

 

      
t-1 t-1pr k pr k prˆ ˆ ˆx t  = A x t  + B x t                          (9) 

Pop et al. [1] proposed a hybrid calibration method (Fig. 
4) that uses the approach of Punzo et al. [15] to eliminate the 
noises by applying Kalman filters to the inputs of the 
car-following system and introduced a T-S FIS to learn the 
compensation value patterns. In this way, the model is faster 
calibrated. Even if T-S FIS are designed for nonlinear systems 
or systems with time delay, Lam [16] argued that T-S FIS is 
also applicable for systems in continuous-time. 

 
Fig. 4. Hybrid online calibration system based on Kalman filters and T-S 

FIS [2-3]. 

Equation (10) defines the fuzzy specific IF-THEN rules of 
a T-S FIS for a continuous-time model as follows [17-18]: 

   
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where    jz t , j = 1, 2, …, p  represent the premise 

variables,      ijF t  with i = 1, 2, …, r  and j = 1, 2, …, p  

are the fuzzy sets defined for r  fuzzy rules,   nx t   - the 

state vector,   mu t   - the input vector, n n
iA   - the 

state matrix, n m
iB   - the input matrix, q n

iC   - the 

output matrix containing q  output parameters, and iΔA , 

iΔB , and iΔC - the matrices incorporating the uncertainties. 

 The inferred model takes into account the fuzzy rules from 

(10) and has the definition from (11) [17-18] where   ih z t  
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represents the normalized grade of membership for each of the 
i  fuzzy rules. 
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 The normalized grade of membership for each of the fuzzy 
rules should comply with (12) [17-18]. 
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IV. CALIBRATION OF THE REFINED CAR-FOLLOWING 

MODEL 

A. Refined Car-Following Model 

The refined car-following model proposed by Pop et al. [2] 
introduces the lane change behavior of the vehicles moving in 
the adjacent traffic lanes in the control strategy of the 
acceleration behavior of FV. In this way, the single-lane 
orientation of the traditional car-following model is extended 
to multiple-lane roads for the same direction of movement. 

The estimation of lane change behavior considers the 
following factors of influence in driver decision [2, 4]: 

 the traffic lane FVe  used by the target vehicle to enter 
the road network; 

 the traffic lane FVd  used by the target vehicle to leave 
the road network, also called destination lane; 

 the probability of changes in the FV velocity FVv  as a 

feedback to the LV movement behavior. 

The first step is to estimate the probability 
jLP̂ of a lane 

change action from lane i  to j as follows [2]: 
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where 
i jLp


 is the total advantage of the two immediately 

affected neighboring vehicles computed according to 
Bayesian rules for conditional probabilities according to (14) 
[2]: 

      
i j j jL FV i FV ip = P d |L P v |L , j = i ± 1


              (14) 

and the lowercase notation represent the probabilities 
calculated based on previous traffic data as defined by (15) 
[2].  
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To simplify the understanding of the acceleration control 
strategy it is necessary to define the notations from (16) where 

2
Li

2
u  is the acceleration of the successor of 

iLFV [19]. 
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According to the approach for the refined car-following 
model, the politeness factor used in the incentive criteria rules 
for lane change defined by [19] is replaced by the probability 

jLP̂ of a lane change action from lane i  to j  from (13) as 

follows, depending on the type of lane change: 

 symmetric lane change [2]: 

   
jdriver L newfollower oldfollower th

ˆu + P u + u  > Δu , j = i ± 1         (17) 

 asymmetric lane change (from left to right) [2]: 

     *
L jiLi

eur
FV L oldfollower th biasFV

ˆu t+τ -u t +P u > Δu -Δu , j = i ± 1 (18) 

 asymmetric lane change (from right to left) [2]: 

     *
L ji Li

eur
FV L newfollower th biasFV

ˆu t+τ -u t +P u > Δu +Δu , j = i ± 1 (19) 

where  
i i

eur *
k L Lu , k= FV , FV  represent the adjusted 

accelerations that comply with the legislation of most 

European countries, thΔu  represents the switching threshold 

and biasΔu  is a constant value that describes the keep-right 
directive of the lane change rule [3, 19]. 

 The refined car-following model assumes that the model 
updates the dynamic parameters according to (17), (18), and 
(19) based on the driver’s decision c  to initiate a lane change 
maneuver, otherwise, in the absence of a decision the model 
behaves as a single-lane car-following model. Equation (20) 
defines the driver decision as the probability of not choosing 
the lane iL  and is computed based on historical traffic data for 
a specific road segment [2-3].  

  ic = 1 - P L                                                            (20) 

B. Simulation Model 

To evaluate the behavior of the T-S FIS calibration 
system in the case of refined car-following model, a 
simulation was created in Simulink (MATLAB R2021b). The 
simulation uses real traffic data for a three-lane road segment 
located in Calea Șagului (Timișoara, Romania). These data 
were collected in August 2019 by the local traffic monitoring 
center through a data acquisition system based on inductive 
loops. Furthermore, these data were classified in the daytime 
and nighttime according to the specific civil twilight for the 
chosen region and period [20]. 

The simulation (Fig. 5) shows the calculation of the 
refined acceleration values u1_i_refined  and u2_i_refined  

of the LV and FV moving in the lane iL , as a switch based 

on the driver’s decision c  regarding a lane change action. 
The calibration system was also highlighted together with a 
detailed overview of its implementation. 
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Fig. 5. Simulation model including a detailed overview of the calibration system (located in the right bottom corner of the figure) [1-4]. 

C. Evaluation of the Calibration Method 

The following section discusses the calibration of traffic 
parameters depending on the daytime and nighttime traffic 
behaviors. The aim of these discussions is to identify specific 
improvements related to road network loading. Furthermore, 
this paper also evaluates the performance of the online 
calibration method based on the mixture between Kalman 
filters and T-S FIS through a comparison with the Kalman 
filter-only method for the refined car-following model. 

V.  RESULTS AND DISCUSSIONS 

Figure 6 shows a comparative overview of the simulation 
results for both daytime and nighttime traffic cases. The 
running distances and the dynamic safety distances were 
considered as main data to visualize the calibration results. 

For daytime traffic (Fig. 6a) a lane change action is 
observable at time t = 6.80 ms , but at that time, the system 
being already calibrated, this lane change action does not 
influence the control of the FV behavior, the calibration status 
being maintained. Analyzing the behavior for the night traffic 
(Fig.6b) results that if a lane change action took place before 
the system was calibrated, this does not influence the 
calibration process, the system joining the calibrated status 
after this action. Also, in the case of nighttime traffic a lane 
change action has been captured at time t = 3.00 ms . 

The evolution of offset values is similar for both cases. In 
the case of nighttime traffic, the system is calibrated faster, 
which is explainable through the reduced traffic during night 
that leads to lower need for computation resources compared 
to daytime traffic. 

 
Fig. 6. Simulation results – a comparative overview of (a) - daytime and (b) - nighttime traffic profiles.

The performance overview (Fig. 7) shows that the 
“Kalman filter-only approach introduces a uniform increase 
in computation error that leads to a scaled running distance 

compared to real traffic conditions” [1], an error missing in 
the case of the mixture of Kalman filters with T-S FIS.  
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Fig. 7. Performance overview – a comparison between the proposed 
calibration method and the Kalman filter-only method. 

VI. CONCLUSIONS 

This paper performed an evaluation of the online 
calibration method based on the mixture between Kalman 
filters and T-S FIS [1] in the case of a refined car-following 
model that incorporates the lane change actions of vehicles in 
adjacent traffic lanes [2-4]. This evaluation shows that the 
calibration process is delayed in the case of daytime traffic 
compared to nighttime traffic. This delay is related to the 
network loading, leading to a short increase in computational 
processing times propagated from the data acquisition system. 
The calibration method discussed does not introduce 
computational delays, fitting to a real-time processing system.  

Further research can improve of this calibration method by 
applying neuro-fuzzy approaches or using macroscopic traffic 
data as a third linguistic variable for the current T-S FIS. 
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